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Vortex shedding and frequency selection in
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Motivated by our interest in unsteady aerodynamics of insect flight, we devise a com-
putational tool to solve the Navier–Stokes equation around a two-dimensional moving
wing, which mimics biological locomotion. The focus of the present work is frequency
selection in forward flapping flight. We investigate the time scales associated with
the shedding of the trailing- and leading-edge vortices, as well as the corresponding
time-dependent forces. We present a generic mechanism of the frequency selection as
a result of unsteady aerodynamics.

1. Introduction
Flapping motion is a basic mode of locomotion in insects, birds, and fish. Thrust and

lift are generated as a result of interactions between flapping wings or tails and their
surrounding fluids. Despite a long-standing tradition in scientific work inspired by
biological locomotion, which at least dates back to the 1500s when Leonardo da Vinci
designed a number of ornithopters based on bird flight, the highly unsteady nature
of flows around a flapping wing make the theoretical and experimental treatment of
the subject difficult, and our partial understanding of the vortex shedding in unsteady
flows, which is crucial to the force generation, is far from satisfactory. Pioneering work
in the biofluiddynamics of animal locomotion in the quasi-steady limit was done by
Weis-Fogh & Jensen (1956), Lighthill (1975), among others. Comprehensive reviews
of much previous work can be found in the articles by Lighthill (1970), Maxworthy
(1981), Ellington (1984), and Spedding, (1992). Some recent experimental work can
be found in Ellington et al. (1996) and Dickenson, Lehmann & Sane (1999).

We note that a distinct feature of biological flight and swimming is the frequency
variation among different species and within each species, which cannot be entirely
accidental. Even to a layman’s eye, there is a consistent trend in these variations:
large animals, birds and fish, appear to operate in the lower frequency regime, while
the smaller ones, insects, in the higher frequency regime.

An insect, bird or fish has a huge parameter space at its disposal, which includes
the mechanical properties of wings and muscles, as well as the dynamics of the
wing. The selected frequency must be a result of the combined effects of biology and
physics. In the past, the dependence of frequency on size has been estimated using
dimensional arguments related to power consumption (Lighthill 1977; Weis-Fogh
1977; Wu 1977). It has also been argued that the flapping frequency is dictated by
the natural oscillation frequency of the muscles (Greenewalt 1962). In this work, we
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instead focus on the role of the unsteady aerodynamics and ask whether and how
aerodynamics might select a range of preferred frequencies.

To separate the biology from this complex problem, we choose to study a two-
dimensional flapping wing at Reynolds numbers in the range of insect flight. Despite
the simplicity of the model, the unsteady effects of complex vortical flows around a
flapping wing, and the corresponding forces, are not fully understood. In particular,
it is unclear how the intrinsic time scales in unsteady flows can play a role in force
generation.

The basic mechanism of thrust generation in flapping flight was illustrated long
ago by Glauert (1929) in a classical linear theory of an oscillating wing in inviscid
flow. Glauert’s theory predicts a thrust, generated by shedding a vortex wake, which
carries the momentum backward with respect to the wing. For a fixed advance
ratio, which measures the ratio of maximum flapping velocity to the mean forward
velocity, Glauert’s result predicts no preferred frequency, but rather, that the thrust
coefficient Ct and the efficiency Q increase monotonically with decreasing frequency.
This suggests a rather paradoxical situation: to achieve the best efficiency, birds or
insects should flap at close to zero frequency.

More elaborate theories, including the vortex panel method and the unsteady lifting-
line theory, have been developed for both bird flight (Phlips, East & Pratt 1981) and
fish swimming (Lighthill 1970; Chopra 1976). These models again concluded that the
thrust and efficiency depend on frequency monotonically. A more detailed review of
various modelling methods can be found in Smith, Wilkin & Williams (1996).

Recently Hall, Pigott & Hall (1998) examined the power requirements for flapping
flight. By applying a variational principle, they found a wake configuration which
minimizes the induced power loss, a technique extended from the Betz criterion
for optimal propellers. Their model showed optimal frequencies. This approach is
computationally less expensive than solving the Navier–Stokes equation, because the
wake solution is approximated by a two-dimensional vortex sheet and quasi-steady
lift–drag relations are assumed. It would be worthwhile to compare such results with
the ones obtained by direct numerical simulation.

Contrary to theories, experiments on oscillating foils have often shown the ex-
istence of ‘optimal’ parameters for a given experiment. For example, Triantafyllou,
Triantafyllou & Gopalkrishnan (1991) showed that ‘optimal’ flapping occurs when the
Strouhal number is in the range of 0.2–0.3. Their definition of the Strouhal number
is equivalent to the advance ratio mentioned earlier. An optimal Strouhal number
alone, however, does not select an optimal frequency, simply because one can vary
frequency and amplitude simultaneously to fix the Strouhal number. In another ex-
periment, Gursul & Ho (1992) examined the lift coefficient on a wing oscillating in the
direction of the mean flow. They observed that the lift coefficient peaks at a certain
frequency, and argued that this frequency could be related to the length scale of the
leading-edge vortex. However, this leading-edge vortex alone does not fully explain
why the thrust coefficient increases with the decreasing frequency before it decreases.

The purpose of our study is two-fold. First, we devise a computational tool to
solve the Navier–Stokes equation around a two-dimensional moving wing, which is
capable of mimicing biological locomotion. This then allows us to quantify the vortex
dynamics and unsteady forces corresponding to different wing motions. Secondly, we
apply such a tool to investigate the frequency selection mechanism in flapping flight,
and reconcile the differences between the existing theories and experiments.

In addition to our interest in frequency selection in flapping flight, our compu-
tational tool is implemented in response to the general interest in quantifying the
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dynamics of unsteady viscous vortical flows at intermediate-range Reynolds numbers,
typically between 102 and 104, and in the full range of frequency parameters. These
computations can be especially useful in research on insect flight. Insects are different
from large birds and fish in that they operate at relatively lower Reynolds numbers
and higher frequency parameters. Consequently the applicability of inviscid quasi-
steady analysis is questionable (Weis-Fogh & Jensen 1956; Ellington 1984; Norberg
1975; Childress 1981; Spedding 1993). Direct numerical simulation of unsteady vis-
cous flows around a flapping wing would allow us to investigate the validity of the
quasi-steady Kutta condition employed in previous theoretical models, as well as to
suggest more realistic models of the dynamics of trailing- and leading-edge vortices.
These computations can be further compared with experiments to cross-check the
validity of different methods.

Ideally, three-dimensional computation around an elastic wing is desirable. Re-
cently, Liu et al. (1998) applied a method of pseudo-compressibility to compute flows
around a three-dimensional rigid wing, and examined the axial flows associated with
the leading-edge vortex as seen in the experiments by Ellington et al. (Liu et al.
1998; Liu & Kawachi 1998; Ellington et al. 1996). However, from a practical point
of view, while it is possible to resolve two-dimensional flows at Reynolds numbers
relevant to insect flight, it remains to be seen whether one can do the same for
three-dimensional flows. Therefore, a two-dimensional computation can serve both
as a reliable tool in its own right and a useful reference point to be compared with
three-dimensional simulation. Previously, Freymuth, Gustafson & Leben (1992) and
Gustafson & Leben (1991) computed two-dimensional hovering flight. These results
show qualitative agreement with the experiments. Their comparison of the forces,
however, was inconclusive.

In our computation, we employ a high-order numerical scheme, an improvement
over previous work, to resolve the vortex dynamics, which is crucial to the force
generation on a moving wing. The computation described here serves as our basis
of studies of forward and hovering flight. The latter will be reported in future
publications.

In the present work, we focus on the question of frequency selection in forward
flapping flight, as introduced at the beginning of this section. We investigate the
time scales associated with the shedding of the trailing- and leading-edge vortices, as
well as the corresponding forces. We present a generic mechanism of the frequency
selection as a result of the unsteady aerodynamics.

In the next section, we define a flapping model and describe our computational
method. The computational tool is tested by comparing results on impulsively started
flows with analytical and experimental results (Bouard & Coutanceau 1980; Dickinson
& Götz 1993). In § 3 we show the existence of an optimal flapping sequence and
signatures of the associated vorticity field. To unfold the basic mechanism behind
the observed optimal, we investigate in detail the unsteady effects and the dynamics
of the leading-edge vortex in an idealized single stroke. Finally we interpret optimal
flapping with the help of our results on a single stroke, and confirm our findings with
further numerical experiments. We conclude with a brief summary and comparisons
of our results with existing literature on wing mechanics and animal flight.

2. Flapping model and computational method
We consider a simple model describing the forward flapping motions as drawn

schematically in figure 1. The ellipse represents a wing element in the chord direction.
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Figure 1. Flapping model. The ellipse represents a cross-section of a flapping wing in the chord
direction. The thickness ratio is chosen to be 0.125 for most of our computations unless otherwise
specified. u0 is the mean flight velocity, u1 the flapping velocity, and β the angle between the stroke
plane and the x-axis. Mean thrust and lift are defined with respect to the direction of u0.

The motion of the wing consists of the superposition of the mean forward motion,
denoted by u0 and a sinusoidal flapping motion u1(t), in the direction of a line
inclined at angle β to the horizontal, with an amplitude A and frequency f, i.e.
u1(t) = 2πfA sin (2πft).

For simplicity, we choose the mean angle of attack to be zero, and set β to be π/2.
We will discuss the effect of non-zero mean angle of attack at the end of the paper.
The averaged resultant force in this case has only a horizontal component. In reality,
insect and bird flight generate both lift and thrust by tilting the wing relative to the
direction of flight.

The parameters, u0, f, and A, together with kinematic viscosity ν and wing chord c,
form three dimensionless quantities: the Reynolds number, Re, and the two Strouhal
numbers, Sta and Stc, defined as:

Re = u0c/ν, (2.1)

Sta = fA/u0, (2.2)

Stc = fc/u0, (2.3)

Note that Sta measures the ratio of the maximum flapping velocity and the forward
velocity, and Stc is the dimensionless flapping frequency. In the fluid mechanics
literature, the Strouhal number is usually associated with the dimensionless shedding
frequency of a von Kármán wake (Tritton 1992); here we use the term in a somewhat
different context. In the insect flight literature Sta and Stc are sometimes referred
to as the advance ratio and the reduced frequency parameter respectively. The flows
around birds and insects can be considered incompressible: the Mach number is
typically 1/300 and the frequency is about 10–103 Hz.

To solve the flows around a moving wing, we employ a fourth-order essentially
compact finite difference scheme (EC4) for the incompressible Navier–Stokes equation
developed by (E & Liu 1996). An advantage of the scheme is that at each time step,
only two Poisson solvers are required to achieve a fourth order spatial accuracy. The
scheme uses the vorticity-stream function formulation, and the vorticity boundary
condition is explicitly enforced to satisfy the no-slip boundary condition. For a
detailed description of the method see (E & Liu 1996).

In this study, in an effort to efficiently resolve the two-dimensional flow between
Re = 102 and Re = 104, we adapt the scheme to elliptic coordinates and treat the
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Figure 2. The elliptic coordinates (µ, θ) fitted to a two-dimensional wing. Confocal ellipses and
hyperbolae correspond to constant µ and θ, respectively. The Cartesian coordinates, with periodic
boundary conditions in the θ-direction, conformally mapped from the elliptic coordinates.

far-field boundary condition on the stream function almost exactly in the Poisson
solvers. The elliptic coordinates (µ, θ) are shown in figure 2, where constant µ and θ
correspond to confocal ellipses and hyperbolae.

A uniform mesh in (µ, θ) is naturally clustered near the tips of the wing and is
coarse at the far field in (x, y)-space. Such a grid is suitable for our problem since the
vorticity is strongest near the tip of the ellipse and is weaker away from the body.
Furthermore, the elliptic coordinates can be mapped onto a Cartesian coordinates via
the conformal transformation:

x+ iy = cosh (µ+ iθ), (2.4)

which preserves the Laplacian up to a local scaling function S(µ, θ):

∆x,y = ∆µ,θ/S(µ, θ), with S(µ, θ) = cosh2 µ− cos2 θ. (2.5)

The dimensionless Navier–Stokes equation for the two-dimensional vorticity field in
the elliptic coordinates becomes

∂(Sω)

∂t
+ (
√
Su · ∇)ω =

1

Re
∆ω, (2.6)

where u is the velocity field, ω the vorticity field, and Re the Reynolds number. For
incompressible flows, u and ω can be expressed in terms of the stream function Ψ :

Sω = ∆Ψ, (2.7)√
Su = −∇×Ψ, (2.8)

where the derivatives are with respect to (µ, θ). The conformal transformation results
in a constant-coefficient Poisson equation for Ψ , which can be solved efficiently via
FFT.

We solve the Navier–Stokes equation in the body-frame. For the translational
motions considered here, no fictitious force appears in the vorticity equation. The
no-slip boundary condition at the wing is enforced explicitly through the vorticity
boundary condition at the boundary. The radius of the computational boundary is
chosen to be 5 to 10 times the half-chord length. This large radius is affordable due to
the stretched mesh in the elliptic coordinates. In the far field, the boundary condition
on the stream function is given by the potential flow,

Ψ (r, θ) = Γ ln r +
∑
n>1

An
einθ

rn
for r > a, (2.9)
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where Γ is total circulation, and An the multipole moments of ω. The correct solution
can be obtained via an extra FFT to correct the solutions Ψ̃ obtained with the
approximate boundary condition Ψ̃ (R, θ) = Γ lnR, where R is the radius at the
computational boundary. The details are described in Wang (1999).

We use a fourth-order Runge–Kutta scheme for the time iterations, which exhibits a
stability domain for this explicit scheme. The stability condition includes two CFL-like
conditions related to the convection and diffusion time scales over a mesh size:

dt1 = C1ds
2 sinh2 µ0/4ν, dt2 = C2ds sinh µ0, (2.10)

where ds = min (dµ, dθ), µ = µ0 at the ellipse, and C1 = C2 = 0.8. The time step is
min (dt1, dt2). The basic time iteration in each computation step involves the following
sequence: ωn → Ψn+1 → un+1 → ωn+1, where superscripts indicate the time step.

To resolve the flow, we keep at least 10 grid points along the radial direction in
the boundary layer, and at least 30 points in the azimuthal direction around each tip,
whose length scale is estimated by its radius of curvature. The typical resolution for
Re ∼ 1000 is 128× 256 for single strokes, and 256× 256 for the flapping motion.

To test our code, we compute flow past a cylinder, a limiting case of an ellipse, and
compare the results with experiments by Bouard & Coutanceau (1980). We find good
agreement in the separation angle, as well as the velocity field as a function of time
and space. As an additional check, we also compare the computed flow outside the
boundary layer at early time with the potential solution. Both checks are detailed in
the Appendix. In the next section, we will also compare the force measurements in a
single stroke with the experiments by Dickinson & Götz (1993).

The forces on the ellipse can be computed from the vorticity field. In particular,
the pressure force F p is determined by the vorticity flux, and the viscous force F ν by
the vorticity along the ellipse. More specifically,

F p = ρν

∫
∂ω

∂µ
(sinh µ0 sin θx̂+ cosh µ0 cos θŷ)dθ, (2.11)

F ν = ρν

∫
ω(− cosh µ0 sin θx̂+ sinh µ0 cos θŷ)dθ, (2.12)

where ρ is the fluid density. Or equivalently, the forces can be evaluated by the rate
of change of total momentum in the fluid. It is conventional to define the lift and
drag to be orthogonal and parallel to the velocity at infinity u∞. The dimensionless
forces are the lift and drag coefficients:

Cd =
F⊥
ρu2∞c

, Cl =
F‖
ρu2∞c

. (2.13)

We will adopt these definitions in our discussion of single-stroke dynamics. However,
in the case of flapping, we are interested in the average forces. It is convenient to
decompose the forces in the directions corresponding to the mean horizontal flow
velocity, Fx and Fy . We denote the corresponding dimensionless forces the thrust (Cx)
and lift (Cy) coefficients,

Cx =
Fx

ρu2
1c
, Cy =

Fy

ρu2
1c
. (2.14)

The two sets of definitions are simply choices of reference frames, and have no
physical consequences apart from convenience in discussions.

The definition of thrust efficiency is not unique, and we adopt the definition for
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Figure 3. Time-dependent thrust and lift coefficients for fixed Sta = 0.16, and different frequencies,
f = 0.25, 0.5, 1, and 2 Hz, or equivalently, Stc = 0.5, 1, 2, and 4. The frequency of each curve can be
read directly from the graph by counting peaks.

the time-averaged thrust efficiency Q from von Kármán & Bergers (1963), which is
reasonable for our model,

Q =
〈Fx(t)〉u0

〈Fy(t)uy(t)〉 . (2.15)

3. Results
First we demonstrate that the optimal flapping frequencies do indeed exist by

computing the vortex dynamics and forces around a flapping wing at various fre-
quencies and amplitudes, and later we examine the physical mechanism behind these
optima.

We define the optimal flapping to be the one which produces the maximum thrust
per unit power input. Among the three parameters, we expect the Re dependence to
be relatively weak for sufficiently high Re, e.g. Re > 103, and fix Re in our studies.
In addition, the parameter Sta was shown experimentally to be a scaling variable
(Triantafyllou et al. 1991). We will first fix Sta and study the dependence of the thrust
on various combinations of frequency and amplitude, and later vary Sta.

3.1. Optimal flapping: observations and qualitative features

In this set of numerical experiments, we set Re = 1000, and Sta = 0.16, a number
based on forward dragonfly flight with f = 40 Hz, A = 2 cm and u = 5 m s−1

(Norberg 1975).
Figure 3 shows the thrust and lift coefficients vs. the dimensionless time ts, defined

as ts = tu0/c, for four different frequencies, Stc = 0.5, 1.0, 2.0 and 4.0. Note we have
set u0 = 1 and c = 2 to fix our units.
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Stc 4 2 1 0.5

〈Cx〉 0.18 −0.06 −0.24 −0.08
〈Cxp〉 −0.02 −0.18 −0.27 −0.12
〈Cxν〉 0.20 0.12 0.03 0.04
Q(%) / 1.2 13.5 11.5

Table 1. Thrust coefficient 〈Cx〉 and its two contributions from the pressure force (Ctp) and the
viscous force (Ctν) as a function of Stc. Efficiency is calculated only in the cases of positive thrust.
The Reynolds number is 1000.

The lift coefficients Cy in the bottom plot vary symmetrically about the zero mean,
thus the average vertical force is zero as expected from the symmetric flapping. Little
bumps on the three low-frequency curves result from the dynamics of the leading-edge
vortices as we shall see in the next figure.

On the other hand, the thrust coefficients Cx are asymmetric about the zero axis,
because the fore-and-aft symmetry is broken by the mean forward velocity field. The
frequency of Cx is twice that of Cy , because the thrust is generated in both the up
and down strokes. By definition, a negative value of Cx corresponds to a thrust in the
mean forward direction. In table 1, we tabulate the average thrust coefficient and the
efficiency Q. 〈Cx〉 and Q reach maxima at Stc ∼ 1.

Next we examine the qualitative features of the associated vortex dynamics in these
four cases. First the vortices in the wake rotate in the opposite direction compared
to a von Kármán wake. Hence the induced flow has a component moving backward
with respect to the wing to generate a thrust (von Kármán & Bergers 1963). As a
side remark, the apparent downward drift in both the experiments and these pictures
is a transient behaviour due to the initial condition. We check this by repeating the
same computation with the initial flap reversed; the small drift is also reversed.

During each period, the trailing-edge vortex begins to shed and grow at the turn of
a flap, but the shedding of the leading-edge vortex depends on the angle of attack and
the flapping frequency. In figure 4, we compare the vorticity contours for different
flapping frequencies at 1/8th of a period. We sketch the basic vortex features next
to these figures. In the case of the highest Stc, the trailing-edge vortex is relatively
small, as are the net circulation around the wing and the forces. As Stc decreases, the
trailing-edge vortex grows and the forces increase. Finally, as Stc further increases,
the leading-edge vortex, which has the opposite sign to the trailing-edge vortex starts
to shed and reduce the net circulation and the forces. The middle value of Stc
corresponds to the observed optimal thrust and efficiency. To understand these vortex
dynamics more quantitatively, we next analyse the growth of vortices and forces in a
single stroke.

3.2. Single-stroke dynamics

The previous pictures suggest that the following two processes may play significant
roles: (1) the unsteady forces due to the trailing-edge vortex growth, similar to the
Wagner effect (Wagner 1921), and (2) the shedding of the leading-edge vortex as
a function of Stc. We now investigate these effects in a single stroke moving with
velocity U at an angle of attack α, which serves as a snapshot of a flapping wing, with
U the sum of u0 and u1, α = tan−1[u1(t)/u0]. The lift is defined to be orthogonal to U,
and its forward component corresponds to the instantaneous thrust in the flapping
model.
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Figure 4. Contour plot of the wake vorticity at 1/8th of a period for different frequencies: (a)
f = 1.0 (Stc = 2.0), (b) f = 0.5 (Stc = 1.0), (c) f = 0.25 (Stc = 0.5). The grey scale indicates
the strength of the vorticity. Other parameters are: Re = 1000 and Sta = 0.16. The sketches on
the right-hand side summarize the basic structure of shed vortices. The leading- and trailing-edge
vortices have different signs. In (a), the trailing-edge vortex is small and the leading-edge vortex is
bound to the ellipse; in (b), the trailing-edge vortex is larger compared to (a) while the leading-edge
vortex is still bound; in (c), both the leading- and trailing-edge vortices are shed (the vortex at the
bottom of the ellipse is the leading-edge vortex shed in the previous cycle, which is best viewed in
the animation of the simulation.) In the sketches, the black filled dots indicate clockwise-rotating
vortices and the circles indicate counter-clockwise-rotating vortices.

3.2.1. Unsteady forces

To illustrate the unsteady behaviour, we compute the time-dependent lift on the
wing after an impulsive start with an angle of attack α. We examine the lift coefficient
Cl , as a function of time. Figure 5 shows a case with α = 40◦ and Re = 1000.

The force coefficient curve on the right side of figure 5 shows three different regions.
Region A corresponds to the diffusion of the boundary layer vorticity immediately
after an impulsive start, and region B corresponds to the roll-up and the growth
of the vortex sheet near the tips of the ellipse and the formation of the attached
leading-edge vortex. We remark that the transitional point between regions A and B
gives a direct measure of the onset of the shedding. Finally, in region C the force
settles into a quasi-steady state as the vortices are convected downstream from the
body. At a much later time, the leading-edge vortex interacts with the trailing-edge
vortex and triggers the onset of the von Kármán wake. The periodicity, however, is
on the order of T = 10 as shown in the inset, which is much larger than the time
scale of our interest, the flapping period. The relevant time scale for our problem is
the characteristic time in region B, which is denoted τ, and is on the order of unity.
Although the impulsively started flow imposes a special initial condition, τ depends
mostly on Re and the geometry of the wing; thus it is expected to be of the same
order of magnitude as in more general flows.

A straightforward consequence of the observed unsteady effects is to modify the
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Figure 5. Vorticity contour plot (a) and lift coefficient (b) on an impulsively started ellipse with an
angle of attack 40◦. Re = 1000. The inset shows the lift coefficient over a longer time period.

forces obtained from the quasi-steady analysis. More interestingly, the unsteady effect
also sets an intrinsic time scale τ to be compared with the flapping frequency Stc.
Roughly speaking, the wing should flap slowly enough, compared to τ, to allow the
growth of the vortex. We will return to this point in the next section.

3.2.2. Leading-edge vortex

In the previous case with α = 40◦, we note that the leading-edge vortex remains
bound to the wing during the time of interest. In this section, we investigate its
behaviour as a function of α and its influence on the lift. In figure 6, we plot the
lift coefficient as a function of α at ts = 2.0 for Re = 192. The shape of the curve
depends on the time of measurement, as seen in the preceding subsection, and the
thickness of the plate, which is illustrated on figure 6(b), where the lift coefficients are
shown for two different thickness ratios of the ellipse, e = 0.125 and e = 0.25. Lift
coefficients are higher in the case of a thinner ellipse, which is not surprising. For
geometrically similar ellipses subject to the same motion at a fixed Reynolds number,
the total lift can only depend on the thickness ratio. In the case of a thinner ellipse,
more vortices are shed due to a sharper corner, to result in a higher lift. Consequently
we expect that the experimental curve taken by Dickinson & Götz (1993) for a plate,
where e = 0, is higher than the numerics, where e = 0.125. Nevertheless, the stall
angle, corresponding to the maximum lift, appears to be independent of the thickness
ratio. This suggests that the stall angle is determined mostly by the Reynolds number,
under quasi-steady conditions, for geometrically similar wings. Indeed, the stall angle
is found to be around 45◦ in the experiment and the numerics. The fact that the curve
is approximately sin 2α suggests that the lift in this case comes from viscous forces.

Early measurements of lift–drag at low Reynolds numbers can also be found in
Vogel (1967). To illustrate the Re dependence of the stall angle, we also include a
classical curve for an airfoil, at Reynolds number around 106 (Prandtl & Tietjens
1934), whose stall angle is about 12◦. The larger stall angle at lower Reynolds numbers
can be related to the viscous effect that stabilizes the leading-edge vortex. Finally, as
a reference, we show the prediction from a two-dimensional potential theory with the
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Figure 6. (a) Lift coefficient as a function of angle of attack. The experimental curve is taken from
figure 4 in Dickinson & Götz (1993). The data are measured at ts = 2.0. The classical curve for an
airfoil curve is from Prandtl and Tietjens (1934). (b) Lift coefficient as a function of the thickness
ratio of the ellipse.

Kutta condition applied to the trailing edge approximated by the tip of the ellipse.
Understandably, the classical theory fits the airfoil data with a horizontal shift, to
account for the asymmetry, but not the lower Reynolds number flows.

The dynamics of the leading-edge vortex is directly connected to the forces on the
wing. At Re ∼ 1000, the lift is dominated by the pressure, which can be expressed by
the vorticity flux as

P (θ) = ρν

∫ θ

0

∂ω

∂n
ds, (3.1)

where n is the normal vector at the surface, and ds is the line segment along the
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Figure 7. Vorticity contours (a) and pressure distribution (b) around a wing for different angle of
attack α. θ = [0, 180◦] correspond to the upper surface, and θ = [180◦, 360◦] the lower surface.

ellipse, which is parameterized by θ. In figure 7 we show the pressure distribution
for three typical cases, α = 4.5◦, α = 42.5◦, and α = 72◦ at time t = 2.2. For each
case, we also show the corresponding vorticity configuration. We note that in the
cases of the smallest and largest α, both leading- and trailing-edge vortices are shed,
while in the other case, the leading-edge vortex remains bound. The presence of this
leading-edge vortex induces a lower pressure region, seen as a dip in the pressure
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distribution, which enhances the lift. Although the three-dimensional leading-edge
vortex is different, and has a strong component in the axial direction, as seen in the
recent work by Ellington (1984), in an early work Savage, Newman & Wong (1978)
applied the two-dimensional potential theory to flows around a plate with the presence
of a leading-edge vortex at an assumed position, and they found a substantial increase
of the force. Our computation can provide a further input to the two-dimensional
theory with the position and strength of the leading-edge vortex, governed by the
Navier–Stokes dynamics. This provides a basis for our future modelling of these
leading-edge vortices.

3.3. Optimal flapping: explanations

Now we return to the flapping mode and interpret the observed optimal flapping. In
the flapping motion, we are interested in the average thrust. The lift analysed in the
previous section has a component in the forward direction which has to overcome
the viscous drag in order to generate a net thrust. In figure 8 we show the thrust
coefficient of an impulsively started flow at Re = 1000. The thrust exists only at
or above a minimum angle of attack, αmin = 20◦, on figure 8(a). More interestingly,
both lift and drag are time-dependent, and the thrust only occurs in a time window
ts ∈ (0.2, 1.5), or equivalently, t ∈ (0.4, 3). The lower bound can be associated with
the time scale governing the growth of the trailing-edge vortex, hence the lift, as
previously seen in figure 5. The upper bound can be attributed to the time scale
governing the shedding of the leading-edge vortex which reduces the lift. Each curve,
corresponding to a given α, has a maximum |Cx|, whose dependence on α is shown
on figure 8(b).

Now we can imagine that during a flapping motion, the effective angle of attack
increases from 0◦ to a maximum angle of attack over time T/4. In order to achieve
a high thrust, there are two conditions. First, as suggested by figure 8, the maximum
angle of attack should be in the range of 45◦–60◦ corresponding to Sta between 0.16
and 0.27, which overlaps with the experimentally observed range (Triantafyllou et al.
1991). Secondly, for each fixed Sta, the wing stroke should be just long enough to
stay inside the thrust window. Among the four different frequencies shown in figure
3, f = 2 Hz falls outside the thrust window, and indeed we find a drag instead of a
thrust; f = 0.5 Hz corresponds to a situation where the flap just reaches its max(Cx)
at the end of the half-cycle to benefit from the whole thrust window to produce a
large thrust. The other two cases correspond to the intermediate situation.

To confirm this picture, we repeat similar experiments for different Sta. The results
are summarized on figure 9, where the absolute values of the thrust coefficient and
efficiency are plotted against Stc. Note that for each fixed Stc, |Cx| increases with Sta
as expected. Furthermore the maxima occur at Stc ∼ 0.7 independent of Sta at higher
Sta. This is consistent with figure 8, where we observe that the maximum thrust occurs
at a time which is insensitive to Sta for sufficiently high Sta.

Based on the mechanisms discussed above, we can also speculate on the effect of
non-zero mean angle of attack on frequency selection. In particular, in the case of
small mean angle of attack and in the limit of linear approximations, the total force
is simply rotated from that obtained in the zero mean angle of attack case; thus we
expect that the selected frequency remains the same. On the other hand, in the case
of large mean angle of attack, the dynamic stall would occur on a smaller time scale,
and we expect that the selected frequency would shift toward a slightly higher value.
These predictions will be tested in future studies.

In general peaks of efficiency and thrust need not to coincide. Here the efficiency
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shows similar behaviour to the thrust. The low values of thrust indicate that heaving
motion alone at low Reynolds numbers is not the best way to generate thrust. Indeed
heaving motion is mostly employed by fish, which have much larger Reynolds num-
bers, and insects typically use the combination of heaving and pitching motions. We
will investigate the latter in future work. Nevertheless, we expect that the mechanism
for selecting a frequency due to interactions of leading and trailing edges will hold in
more complicated motions.

4. Summary
In summary, we implemented and tested a computational tool to resolve the time-

dependent vorticity and forces in unsteady viscous flows around a moving wing. We
showed an optimal flapping frequency range in a flapping model with two parameters,
Sta and Stc. By analysing in detail the vortex dynamics and the forces in single
strokes, we demonstrated that the preferred Sta is connected with maximizing the
angle of attack allowed for the low range of Reynolds numbers. The optimal flapping
frequency, Stc, for a given Sta, results from exploiting two intrinsic time scales, one
governing the vortex growth and another governing the shedding of the leading-edge
vortex. The model studied here only considers the simplest possible flapping motion.
In our future studies, more realistic motion which includes both heaving and pitching
will be investigated.

It is interesting to note that our observed optimal frequency is very close to the
results by Hall et al. (1998). This is a curious agreement, considering that the two
approaches are rather different. In particular, our wing is two-dimensional, and our
approach emphasizes the unsteady effects. On the other hand, their wing is three-
dimensional, and each cross-section is treated in the quasi-steady limit with viscous
effects incorporated by assuming a quasi-steady lift–drag relation. Their optimal
solution essentially determines the load distribution along the spanwise direction.
Future work perhaps will show whether the observed agreement is intrinsic or merely
accidental.

Animal locomotion is certainly far more complex and diverse than the simple model
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considered here. Therefore it is difficult to compare directly the exact numerical values
of the observed optimal frequencies with the biological data. Nevertheless, the scaling
result shown in figure 9, i.e. Stc ∼ 0.7, suggests that the optimal frequencies are
inversely proportional to the dimension of the wing. This is consistent with the data
compiled by Greenewalt (1962) in his figures 10 and 12 for birds and insect flight,
covering scales of almost three decades, despite the scatter in the data. This apparent
agreement does at least encourage one to ask whether the unsteady aerodynamics
might guide the selection of frequency in animal flight.

Finally we remark that independent of their possible implications in biological
flight, these observed optimal frequencies should be directly of interest to the design
of mechanical flapping wings, especially in the light of recent research efforts in micro
air vehicles (MAV).

I am grateful to Steve Childress and Mike Shelley for advice and useful discussions,
Jianguo Liu for the ec4 code for cavity flows, David Muraki, and John Wettlaufer for
critiques of the manuscript. Finally I thank NERSC for providing the supercomputer
CPU time. The work is supported by NSF grant No. DMS-9400912 and DMS-
9510356 and DOE grant No. DE-FG02-88ER25053.

Appendix. Testing the code with impulsively started flows past a cylinder
We test the code in three ways for flow past an impulsively started cylinder. First

we find a simple example where the approximate solution to the Navier–Stokes
equation is known. Secondly, we compare the computed unsteady velocity field with
well-documented experiments by Bouard & Coutanceau (1980). Finally we compute
the flow with different resolutions to study its convergence property.

As a first test, we note that after an impulsive start, due to the no-slip boundary
condition a thin boundary layer builds up at the surface of the cylinder and diffuses
out radially as time increases. The flow outside the boundary layer, however, can still
be adequately described by the potential flow:

Ψ = −u0

(
r − a2

r

)
sin θ, (A 1)

u(r) = u0

(
1− a2

r2

)
cos θ, (A 2)

uθ(r) = −u0

(
1 +

a2

r2

)
sin θ, (A 3)

where u0 is the velocity of the cylinder and a the radius. We compute at Re = 100
with a resolution 128 × 128. In figure 10, we plot the azimuthal velocity uθ(r) at
T = 0.1 as a function of r/a with fixed θ = π/2. The numerical result agrees well
with the potential solution outside the boundary layer.

To test the dynamics in the vortex wake, we followed the set up of Bouard &
Coutanceau (1980) and computed the velocity field in the wake along the symmetry
axis. We compare the time dependent velocity field with the experiments in the
case of Re = 550. The computational grid is 128 × 128. In figure 10 we copied the
experimental points from figure 18 in Bouard & Coutanceau (1980) and overlaid
our numerics on top of that. The agreement is remarkably good, considering that
the numerics is strictly two-dimensional while the experiment is approximately two-
dimensional, and the initial conditions are not exactly the same. In addition, we found
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the separation angle at Re = 40 to be 52.6◦, which is close to the experimental value,
53.4◦ (Coutanceau & Bouard 1977).

To further test the convergence of our code, we tested with three different resolu-
tions: 64× 64, 128× 128, and 256× 256. The time step is fixed to be dt = 10−4. This
small time step is due to the over-resolution in the case of 256×256. We ran the code
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for 100 steps, and examined the vorticity along the boundary of the cylinder at the
co-located points. In particular, we expected that the ratios (ω64 − ω32)/(ω128 − ω64)
converge to 2p for the pth-order method. We found the numerical ratios to be between
16 to 20 along the boundary, consistent with our fourth-order discretization scheme.
The convergence study for flow past an ellipse at Re = 10000 was also done in Wang,
Liu & Childress (1999).
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